4.6 Article

Asymmetric recognition of DNA local distortion - Structure-based functional studies of eukaryotic Msh2-Msh6

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 276, 期 49, 页码 46225-46229

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.C100450200

关键词

-

资金

  1. NIGMS NIH HHS [GM52956] Funding Source: Medline

向作者/读者索取更多资源

Crystal structures of bacterial MutS homodimers bound to mismatched DNA reveal asymmetric interactions of the two subunits with DNA. A phenylalanine and glutamate of one subunit make mismatched base-specific interactions, and residues of both subunits contact the DNA backbone surrounding the mismatched base, but asymmetrically. A number of amino acids in MutS that contact the DNA are conserved in the eukaryotic Msh2-Msh6 heterodimer. We report here that yeast strains with amino acids substituted for residues inferred to interact with the DNA backbone or mismatched base have elevated spontaneous mutation rates consistent with defective mismatch repair. Purified Msh2-Msh6 with substitutions in the conserved Phe(337) and Glu(339) in Msh6 thought to stack or hydrogen bond, respectively, with the mismatched base do have reduced DNA binding affinity but normal ATPase activity. Moreover, wild-type Msh2-Msh6 binds with lower affinity to mismatches with thymine replaced by difluorotoluene, which lacks the ability to hydrogen bond. The results suggest that yeast Msh2-Msh6 interacts asymmetrically with the DNA through base-specific stacking and hydrogen bonding interactions and backbone contacts. The importance of these contacts decreases with increasing distance from the mismatch, implying that interactions at and near the mismatch are important for binding in a kinked DNA conformation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据