4.6 Article

Transforming growth factor-β inhibition of insulin-like growth factor-binding protein-5 synthesis in skeletal muscle cells involves a c-Jun N-terminal kinase-dependent pathway

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 276, 期 50, 页码 46961-46967

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M104440200

关键词

-

向作者/读者索取更多资源

Transforming growth factor-beta (TGF-beta) and insulin-like growth factors (IGFs) play critical roles in the control of myogenesis. Insulin-like growth factor-binding protein-5 (IGFBP-5), by regulating the bioavailability of IGFs, is involved in controlling IGF-dependent differentiation. We investigated the effects of TGF-13 on the IGFBP-5 production induced by IGFs in mouse myoblasts. TGF-beta leads to a decrease in IGFBP-5 synthesis at both transcript and protein levels, and blocked muscle differentiation. The Smad proteins and the e-Jun N-terminal kinase (JNK) have been shown to be involved in TGF-beta signaling pathways. We provide evidence that the JNK pathway, rather than Smad proteins, is involved in the response of muscle cells to TGF-beta. This factor failed to stimulate the GAL4-Smad 2/3 transcriptional activities of the constructs used to transfect myoblasts. Moreover, stable expression of the antagonistic Smad7 did not abolish the inhibitory effect of TGF-beta on IGFBP-5 production whereas expression of a dominant-negative version of MKK4, an upstream activator of JNK, did. We also showed, using a specific inhibitor, that the p38 mitogen-activated protein kinase (p38 MAPK) was not involved in the inhibition of IGFBP-5 production. Thus, TGF-beta -mediated IGFBP-5 inhibition is independent of Smads and requires activation of the JNK signaling pathway.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据