4.6 Article

5′-AMP-activated protein kinase phosphorylates IRS-1 on Ser-789 in mouse C2C12 myotubes in response to 5-aminoimidazole-4carboxamide riboside

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 276, 期 50, 页码 46912-46916

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.C100483200

关键词

-

向作者/读者索取更多资源

Exercise is known to increase insulin sensitivity and is an effective form of treatment for the hyperglycemia observed in type 2 diabetes. Activation of 5'-AMP-activated protein kinase (AMPK) by 5-aminoimidazole-4-carboxamide riboside (AICAR), exercise, or electrically stimulated contraction leads to increased glucose transport in skeletal muscle. Here we report the first evidence of a direct interaction between AMPK and the most upstream component of the insulin-signaling cascade, insulin receptor substrate-1 (IRS-1). We find that AMPK rapidly phosphorylates IRS-1 on Ser-789 in cell-free assays as well as in mouse C2C12 myotubes incubated with AICAR. In the C2C12 myotubes activation of AMPK by AICAR matched the phosphorylation of IRS-1 on Ser-789. This phosphorylation correlates with a 65% increase in insulin-stimulated IRS-1-associated phosphatidylinositol 3-kinase activity in C2C12 myotubes preincubated with AICAR. The binding of phosphatidylinositol 3-kinase to IRS-1 was not affected by AICAR. These results demonstrate the existence of an interaction between AMPK and early insulin signaling that could be of importance to our understanding of the potentiating effects of exercise on insulin signaling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据