4.6 Article

Hamiltonian theory of the composite-fermion Wigner crystal

期刊

PHYSICAL REVIEW B
卷 64, 期 24, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.64.245326

关键词

-

向作者/读者索取更多资源

Experimental results indicating the existence of the high-magnetic-field Wigner crystal have been available for a number of years. While variational wave functions have demonstrated the instability of the Laughlin liquid to a Wigner crystal at sufficiently small filling, calculations of the excitation paps have been hampered by the strong correlations. Recently a new Hamiltonian formulation of the fractional quantum-Hall problem has been developed. In this work we extend the Hamiltonian approach to include states of nonuniform density and use it to compute the transport gaps of the Wigner crystal states. We find that the Wigner crystal states near nu=1/5 are quantitatively well described as crystals of composite fermions with four vortices attached, Predictions for gaps and the shear modulus of the crystal are presented, and found to be ill reasonable agreement with experiments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据