4.6 Article

Theoretical study of the chemical vapor deposition of (100) silicon from silane

期刊

PHYSICAL REVIEW B
卷 64, 期 24, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.64.245330

关键词

-

向作者/读者索取更多资源

We use density functional theory to investigate the chemical vapor deposition of (100) silicon front silane. The reaction proceeds through four sequential steps. The first step is activation of surface sites through hydrogen abstractions by atomic H or through H-2 desorption. We find that hydrogen abstraction barriers by atomic H are less than 1 kcal/mol while H-2 desorption proceeds through a two-step pathway with an overall barrier of 61.1 kcal/mol. Next, adsorption of SiH4 onto bare dimer sites occurs. We calculate the B3LYP barrier to SiH4 adsorption on a single dimer to be 7.4 kcal/mol while the barrier across two dimers is 14.3 kcal/mol. Then, adsorbed SiH3 transforms to bridged SiH2(a) with a barrier of 5.7 kcal/mol relative to SiH3(a) for the mechanism requiring H(g) while the barrier for the mechanism requiring no H(g) is 32.9 kcal/mol. where (g) and (a) represent gas and adsorbed species, respectively. Finally, the dihydride surface transforms to the monohydride surface through two-sequential steps with an overall barrier of 47.0 kcal/mol. which agrees well with the TPD barrier of 43 kcal/mol. The B3LYP H-2 desorption barrier of 61.1 kcal/mol and SiH4 adsorption barrier of 7.4 kcal/mol are in good agreement with the TPD values of 57.2 to 58 kcal/mol and 3.3 to 4.0 kcal/mol, respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据