4.8 Article

Guided shear horizontal surface acoustic wave sensors for chemical and biochemical detection in liquids

期刊

ANALYTICAL CHEMISTRY
卷 73, 期 24, 页码 5937-5944

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac010859e

关键词

-

向作者/读者索取更多资源

The design and performance of guided shear horizontal surface acoustic wave (guided SH-SAW) devices on LiTaO3 substrates are investigated for high-sensitivity chemical and biochemical sensors in liquids. Despite their structural similarity to Rayleigh SAW, SH-SAWs often propagate slightly deeper within the substrate, hence preventing the implementation of high-sensitivity detectors. The device sensitivity to mass and viscoelastic loading is increased using a thin guiding layer on the device surface. Because of their relatively low shear wave velocity, various polymers including poly(methyl methacrylate) (PMMA) and cyanoethyl cellulose (cured or cross-linked) are investigated as the guiding layers to trap the acoustic energy near the sensing surface. The devices have been tested in biosensing and chemical sensing experiments. Suitable design principles for these applications are discussed with regard to wave guidance, electrical passivation of the interdigital transducers from the liquid environments, acoustic loss, and sensor signal distortion. In biosensing experiments, using near-optimal PMMA thickness of similar to2 mum, mass sensitivity greater than 1500 Hz/(ng/mm(2)) is demonstrated, resulting in a minimum detection limit less than 20 pg/mm(2). For chemical sensor experiments, it is found that optimal waveguide thickness must be modified to account for the chemically sensitive layer which also acts to guide the SH-SAW. A detection limit of 780 (3 x peak-to-peak noise) or 180 ppb (3 x rms noise) is estimated from the present measurements for some organic compounds in water.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据