4.5 Article

Prevention of docosahexaenoic acid-induced cytotoxicity by phosphatidic acid in Jurkat leukemic cells: the role of protein phosphatase-1

期刊

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/S0167-4889(01)00143-4

关键词

docosahexaenoic acid; phosphatidic acid; protein phosphatase 1; apoptosis; Jurkat cell; cytotoxicity

资金

  1. NCI NIH HHS [R01 CA57212] Funding Source: Medline
  2. NIGMS NIH HHS [R21GM57371] Funding Source: Medline

向作者/读者索取更多资源

The present investigation explores the role of phosphatidic acid (PA), a specific protein phosphatase-1 (PP1) inhibitor, in cytotoxicity induced by docosahexaenoic acid (DHA). The cytotoxicity of DHA was assayed by quantifying cell survival using the trypan blue exclusion method. A dose-response effect demonstrated that 5 or 10 muM DHA has no effect on Jurkat cell survival, however, 15 muM DHA rapidly decreased cell survival to 40% within 2 h of treatment. Cytotoxicity of 15 muM DHA was prevented by PA. Structurally similar phospholipids (lysophosphatidic acid, sphingosine 1-phosphate, sphingosine, and sphingosine phosphocholine) or metabolites of PA (lyso-PA and diacylglycerol) did not prevent DHA-induced cytotoxicity. PA did not produce micelles alone or in combination with DHA as examined spectrophotometrically, indicating that PA did not entrap DHA and therefore did not affect the amount of DHA available to the cells. Supporting this observation. the uptake or incorporation of [1-C-14]DHA in Jurkat cells was not affected by the presence of PA. However, PA treatment reduced the amount of DHA-induced inorganic phosphate released from Jurkat leukemic cells and also inhibited DHA-induced dephosphorylation of cellular proteins. These observations indicate that PA has exerted its anti-cytotoxic effects by causing inhibition of protein phosphatase activities. Cytotoxicity of DHA on Jurkat cells was also blocked by the use of a highly specific caspase-3 inhibitor (N-acetyl-ala-ala-val-ala-leu-leu-pro-ala-val-leu-leu-ala-leu-leu-ala-pro-asp-glu-val-asp-CHO), indicating that the cytotoxic effects of DHA were due to the induction of apoptosis though activation of caspase-3. Consistent with these data, proteolytic activation of procaspase-3 was also evident when examined by immunoblotting. PA prevented procaspase-3 degradation in DHA-treated cells, indicating that PA causes inhibition of DHA-induced apoptosis in Jurkat leukemic cells. Since DHA-induced apoptosis can be inhibited by PA, we conclude that the process is mediated through activation of PP1. (C) 2001 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据