4.8 Article

Horses damp the spring in their step

期刊

NATURE
卷 414, 期 6866, 页码 895-899

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/414895a

关键词

-

向作者/读者索取更多资源

The muscular work of galloping in horses is halved by storing and returning elastic strain energy in spring-like muscle-tendon units(1,2). These make the legs act like a child's pogo stick that is tuned to stretch and recoil at 2.5 strides per second. This mechanism is optimized by unique musculoskeletal adaptations: the digital flexor muscles have extremely short fibres and significant passive properties, whereas the tendons are very long and span several joints(3,4). Length change occurs by a stretching of the spring-like digital flexor tendons rather than through energetically expensive length changes in the muscle(5). Despite being apparently redundant for such a mechanism(5), the muscle fibres in the digital flexors are well developed. Here we show that the mechanical arrangement of the elastic leg permits it to vibrate at a higher frequency of 30-40 Hz that could cause fatigue damage to tendon and bone. Furthermore, we show that the digital flexor muscles have minimal ability to contribute to or regulate significantly the 2.5-Hz cycle of movement, but are ideally arranged to damp these high-frequency oscillations in the limb.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据