4.6 Article

Mechanically induced ATP release from human osteoblastic cells

期刊

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1006/bbrc.2001.6124

关键词

ATP release; mechanotransduction; purinoreceptors; cytosolic calcium

向作者/读者索取更多资源

Extracellular ATP is a widespread autocrine/paracrine signal since many animal cells release ATP in the extracellular medium; often this release is mechanosensitive, but the molecular mechanism is still unclear. The involvement of vesicular release, conductive channels, or ABC transporters has been suggested in different cell types. We investigated the mechanism of ATP release in human HOBIT osteoblastic cells, in which mechanical stimulation induced intercellular calcium waves sustained by both cell-to-cell coupling through gap junctions and ATP release. In this study we employed a luciferin-luciferase bioluminescence assay to measure the amount of ATP released under different stimulatory conditions. Given the role of connexin hemichannels in favoring passive NAD(+) transport [Bruzzone, S., et al. (2001) FASEB J. 15,10-12], the involvement of connexin hemichannels as putative ATP transporters was initially investigated. In HOBIT cells overexpressing connexin43 the amount of nucleotide released under basal and stimulated conditions was similar to non-transfected cells, ruling out a major involvement of connexin hemichannels in ATP transport. In nontransfected HOBIT cells mechanical stimulations induced by medium displacement and hypotonic stress consistently enhanced ATP efflux. Cytochalsin D treatment did not alter basal and stimulated ATP release, while elevated cAMP levels consistently reduced efflux in both cases. ATP released by hypotonic stress and medium displacement evoked intracellular Ca2+ transients in fura2-loaded HOBIT cells, indicating that different mechanical stimuli activate physiological cell responses. (C) 2001 Elsevier Science.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据