4.6 Article

Chelating activity of advanced glycation end-product inhibitors

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 276, 期 52, 页码 48967-48972

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M108196200

关键词

-

资金

  1. NIDDK NIH HHS [DK-19971] Funding Source: Medline

向作者/读者索取更多资源

The advanced glycation end-product (AGE) hypothesis proposes that accelerated chemical modification of proteins by glucose during hyperglycemia contributes to the pathogenesis of diabetic complications. The two most commonly measured AGEs, N-epsilon-(carboxymethyl)lysine and pentosidine, are glycoxidation products, formed from glucose by sequential glycation and autoxidation reactions. Although several compounds have been developed as AGE inhibitors and are being tested in animal models of diabetes and in clinical trials, the mechanism of action of these inhibitors is poorly understood. In general, they are thought to function as nucleophilic traps for reactive carbonyl intermediates in the formation of AGEs; however alternative mechanisms of actions, such as chelation, have not been rigorously examined. To distinguish between the carbonyl trapping and antioxidant activity of AGE inhibitors, we have measured the chelating activity of the inhibitors by determining the concentration required for 50% inhibition of the rate of copper-catalyzed autoxidation of ascorbic acid in phosphate buffer. All AGE inhibitors studied were chelators of copper, as measured by inhibition of metal-catalyzed autoxidation of ascorbate. Apparent binding constants for copper ranged from similar to2 mm for aminoguanidine and pyridoxamine, to 10-100 mum for carnosine, phenazinediamine, OPB-9195 and tenilsetam. The AGE-breakers, phenacylthiazolium. and phenacyldimethythiazolium bromide, and their hydrolysis products, were among the most potent inhibitors of ascorbate oxidation. We conclude that, at millimolar concentrations of AGE inhibitors used in many in vitro studies, inhibition of AGE formation results primarily from the chelating or antioxidant activity of the AGE inhibitors, rather than their carbonyl trapping activity. Further, at therapeutic concentrations, the chelating activity of AGE inhibitors and AGE-breakers may contribute to their inhibition of AGE formation and protection against development of diabetic complications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据