4.4 Review

An intermediate complexity marine ecosystem model for the global domain

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0967-0645(01)00108-4

关键词

-

向作者/读者索取更多资源

A new marine ecosystem model designed for the global domain is presented, and model output is compared with field data from nine different locations. Field data were collected as part of the international Joint Global Ocean Flux Study (JGOFS) program, and from historical time series stations. The field data include a wide variety of marine ecosystem types, including nitrogen- and iron-limited systems, and different physical environments from high latitudes to the mid-ocean gyres. Model output is generally in good agreement with field data from these diverse ecosystems. These results imply that the ecosystem model presented here can be reliably applied over the global domain. The model includes multiple potentially limiting nutrients that regulate phytoplankton growth rates. There are three phytoplankton classes, diatoms, diazotrophs, and a generic small phytoplankton class. Growth rates can be limited by available nitrogen, phosphorus, iron, and/or light levels. The diatoms can also be limited by silicon. The diazotrophs are capable of nitrogen fixation of N-2 gas and cannot be nitrogen-limited. Calcification by phytoplankton is parameterized as a variable fraction of primary production by the small phytoplankton group. There is one zooplankton class that grazes the three phytoplankton groups and a large detrital pool. The large detrital pool sinks out of the mixed layer, while a smaller detrital pool, representing dissolved organic matter and very small particulates, does not sink. Remineralization of the detrital pools is parameterized with a temperature-dependent function. We explicitly model the dissolved iron cycle in marine surface waters including inputs of iron from subsurface sources and from atmospheric dust deposition. (C) 2001 Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据