4.6 Article

Transcript cleavage by Thermus thermophilus RNA polymerase.: Effects of GreA and anti-GreA factors.

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 277, 期 2, 页码 967-975

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M108737200

关键词

-

资金

  1. NIGMS NIH HHS [R29 GM54136] Funding Source: Medline

向作者/读者索取更多资源

All known multisubunit RNA polymerases possess the ability to endonucleolytically degrade the nascent RNA transcript. To gain further insight into the conformational changes that govern transcript cleavage, we have examined the effects of certain anions on the intrinsic transcript cleavage activity of Thermus thermophilus RNA polymerase. Our results indicate that the conformational transitions involved in transcript cleavage, and therefore backtracking, are anion-dependent. In addition to characterizing the intrinsic cleavage activity of T. thermophilus RNA polymerase, we have identified, cloned, and expressed a homolog of the prokaryotic transcript cleavage factor GreA from the extreme thermophiles, T. thermophilus and Thermus aquaticus. The thermostable GreA factors contact the 3'-end of RNA, stimulate the intrinsic cleavage activity of T. thermophilus :RNA polymerase, and increase the k(app) of the cleavage reaction 25-fold. In addition, we have identified a novel transcription factor in T. thermophilus and T. aquaticus that shares a high degree of sequence similarity with GreA, but has several residues that are not conserved with the N-terminal basic patch region of GreA. This protein, Gfh1, functions as an anti-GreA factor in vitro by reducing intrinsic cleavage and competing with GreA for a binding site on the polymerase.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据