4.5 Article

Phosphorylation of the protein kinase C-theta activation loop and hydrophobic motif regulates its kinase activity, but only activation loop phosphorylation is critical to in vivo nuclear-factor-κB induction

期刊

BIOCHEMICAL JOURNAL
卷 361, 期 -, 页码 255-265

出版社

PORTLAND PRESS
DOI: 10.1042/bj3610255

关键词

novel isoform; PKC; T-lymphocytes; turn motif

向作者/读者索取更多资源

Protein kinase C (PKC)-theta, a member of the 'novel' subfamily of PKC isoforms, is of singular importance in transducing signals in T-lymphocytes. Since understanding of regulatory phosphorylation of novel PKCs is fragmentary and inconsistent with findings for 'classical' PKC isoforms, we investigated three potential phosphorylation sites on PKC-theta; in the activation loop (Thr(538)), turn motif (Ser(676)) and hydrophobic motif (Ser(695)). Combined evidence from phospho-specific antisera and MS demonstrates phosphorylation at all three sites. Unlike its closest paralogue, PKC-delta, lack of negative charge in the activation loop of PKC-theta results in a profound catalytic defect (> 100-fold reduction in the T538A mutant); the high sequence similarity between PKC-theta and -delta assists in the formulation of structural hypotheses to account for this major difference. In contrast with mechanisms proposed for other PKC isoforms, phosphorylation at the other two sites does not reconstitute catalytic activity. Activation loop phosphorylation is critical in vivo, since the T538A mutant completely lost its capacity to mediate T-cell receptor-stimulation of nuclear factor kappaB (NF-kappaB) activation in Jurkat T-cells. Hydrophobic motif phosphorylation also substantially influences PKC-theta catalytic activity (5-fold reduction in the S695A mutant), but does not impair NF-kappaB activation in Jurkat T-cells. Its mechanism is independent of secondary effects on activation loop phosphorylation and cannot be explained by thermal instability. Turn motif phosphorylation has a limited effect on kinase activity, but negatively regulates other aspects of PKC-theta function, since the S676A mutant is more efficient than wild-type in inducing NF-kappaB activation in Jurkat T-cells. These findings expand our understanding of the roles of phosphorylation in novel PKCs, and indicate that PKC-theta is a constitutively competent kinase as a consequence of constitutive phosphorylation of its activation loop.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据