4.8 Article

Pyrophosphorolysis-activatable oligonucleotides may facilitate detection of rare alleles, mutation scanning and analysis of chromatin structures

期刊

NUCLEIC ACIDS RESEARCH
卷 30, 期 2, 页码 598-604

出版社

OXFORD UNIV PRESS
DOI: 10.1093/nar/30.2.598

关键词

-

向作者/读者索取更多资源

Pyrophosphorolysis-activated polymerization (PAP) was initially developed to enhance the specificity of allele-specific PCR for detection of known mutations in the presence of a great excess of wild-type allele. The high specificity of PAP derives from the serial coupling of pyrophosphorolysis-mediated activation of a pyrophosphorolysis-activatable oligonucleotide (P*) followed by extension of the activated oligonucleotide. Herein, we demonstrate that genetically engineered DNA polymerases greatly improve the efficiency of PAP, making it a practical technique for detection of rare mutations. We also show that P* oligonucleotides have the novel and unexpected property of high sensitivity to mismatches throughout at least the 16 3'-terminal nucleotides. Thus, PAP constitutes a technology platform of potential utility whenever high specificity is required along the length of an oligonucleotide.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据