4.4 Article

A comprehensive model for the allosteric regulation of mammalian ribonucleotide reductase. Functional consequences of ATP- and dATP-induced oligomerization of the large subunit

期刊

BIOCHEMISTRY
卷 41, 期 2, 页码 462-474

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi011653a

关键词

-

资金

  1. NCI NIH HHS [CA58567] Funding Source: Medline
  2. NIGMS NIH HHS [GM07229] Funding Source: Medline

向作者/读者索取更多资源

Reduction of NDPs by murine ribonucleotide reductase (mRR) requires catalytic (mR1) and free radical-containing (mR2) subunits and is regulated by nucleoside triphosphate allosteric effectors. Here we present a new, comprehensive, and quantitative model for allosteric control of mRR enzymatic activity based on molecular mass, ligand binding, and enzyme activity studies. In this model, nucleotide binding to the specificity site (s-site) drives formation of an active R1(2)R2(2) dirtier, ATP or dATP binding to the adenine-specific site (a-site) results in formation of an inactive tetramer, and ATP binding to the newly described hexamerization site (h-site) drives formation of active R1(6)R2(6) hexamer. In contrast, an earlier phenomenological model [Thelander, L., and Reichard, P. (1979) Annu. Rev. Biochem. 67, 71 98] (the RT model) ignores aggregation state changes and mistakenly rationalizes ATP activation versus dATP inhibition as reflecting different functional consequences of ATP versus dATP binding to the a-site. Our results suggest that the R1(6)R2(6) heterohexamer is the major active form of the enzyme in mammalian cells, and that the ATP concentration is the primary modulator of enzyme activity, coupling the rate of DNA biosynthesis with the energetic state of the cell. Using the crystal structure of the Escherichia coli RI hexamer as a model for the mR1 hexamer, a scheme is presented that rationalizes the slow isomerization of the tetramer form and suggests an explanation for the low enzymatic activity of tetramers complexed with R2. The similar specific activities of R1(2)R2(2) and R1(6)R2(6) are inconsistent with a proposed model for R2(2) docking with R1(2) [Uhlin, U., and Eklund, H. (1994) Nature 370, 533-539], and an alternative is suggested.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据