4.7 Article

Dark synergy: Gravitational lensing and the CMB

期刊

PHYSICAL REVIEW D
卷 65, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.65.023003

关键词

-

向作者/读者索取更多资源

Power spectra and cross-correlation measurements from the weak gravitational lensing of the cosmic microwave background (CMB) and the cosmic shearing of faint galaxies images will help shed light on quantities hidden from the CMB temperature anisotropies: the dark energy, the end of the dark ages, and the inflationary gravitational wave amplitude. Even with modest surveys, both types of lensing power spectra break CMB degeneracies and they can ultimately improve constraints on the dark energy equation of state w by over an order of magnitude. In its cross correlation with the integrated Sachs-Wolfe effect, CMB lensing offers a unique opportunity for a more direct detection of the dark energy and enables study of its clustering properties. By obtaining source redshifts and cross-correlations with CMB lensing, cosmic shear surveys provide tomographic handles on the evolution of clustering and correspondingly better precision on the dark energy equation of state and density. Both can indirectly provide detections of the reionization optical depth and modest improvements in gravitational wave constraints which we compare to more direct constraints. Conversely, polarization B-mode contamination from CMB lensing, like any other residual foreground, darkens the prospects for ultrahigh precision on gravitational waves through CMB polarization requiring large areas of sky for statistical subtraction. To evaluate these effects we provide a fitting formula for the evolution and transfer function of the Newtonian gravitational potential.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据