4.4 Article

An implicit velocity decoupling procedure for the incompressible Navier-Stokes equations

期刊

出版社

WILEY-BLACKWELL
DOI: 10.1002/fld.205

关键词

incompressible Navier-Stokes equations; implicit time advancement; velocity-pressure decoupling; velocity componets decoupling; second-order accuracy; approximate factorization

向作者/读者索取更多资源

An efficient numerical method to solve the unsteady incompressible Navier-Stokes equations is developed. A fully implicit time advancement is employed to avoid the Courant-Friedrichs-Lewy restriction, where the Crank-Nicolson discretization is used for both the diffusion and convection terms. Based on a block LU decomposition, velocity-pressure decoupling is achieved in conjunction with the approximate factorization. The main emphasis is placed on the additional decoupling of the intermediate velocity components with only nth time step velocity. The temporal second-order accuracy is preserved with the approximate factorization without any modification of boundary conditions. Since the decoupled momentum equations are solved without iteration, the computational time is reduced significantly. The present decoupling method is validated by solving several test cases, in particular, the turbulent minimal channel flow unit. Copyright (C) 2002 John Wiley Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据