4.7 Article

Shielding, but not zeroing of the ambient magnetic field reduces stress-induced analgesia in mice

期刊

出版社

ROYAL SOC
DOI: 10.1098/rspb.2001.1866

关键词

near-zero magnetic fields; nociception; stress-induced analgesia

向作者/读者索取更多资源

Magnetic field exposure was consistently found to affect pain inhibition (i.e. analgesia). Recently, we showed that an extreme reduction of the ambient magnetic and electric environment, by mu-metal shielding, also affected stress-induced analgesia (SIA) in C57 mice. Using CD1 mice, we report here the same findings from replication studies performed independently in Pisa, Italy and London, ON, Canada. Also, neither selective vector nulling of the static component of the ambient magnetic field with Helmholtz coils, nor copper shielding of only the ambient electric field, affected SIA in mice. We further show that a pre-stress exposure to the mu-metal box is necessary for the anti-analgesic effects to occur. The differential effects of the two near-zero magnetic conditions may depend on the elimination (obtained only by mu-metal shielding) of the extremely weak time-varying component of the magnetic environment. This would provide the first direct and repeatable evidence for a behavioural and physiological effect of very weak time-varying magnetic fields, suggesting the existence of a very sensitive magnetic discrimination in the endogenous mechanisms that underlie SIA. This has important implications for other reported effects of exposures to very weak magnetic fields and for the theoretical work that considers the mechanisms underlying the biological detection of weak magnetic fields.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据