4.8 Article

An NMR investigation of CO tolerance in a Pt/Ru fuel cell catalyst

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 124, 期 3, 页码 468-473

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja011729q

关键词

-

向作者/读者索取更多资源

We report the first combined application of solid-state electrochemical NMR (EC NMR), cyclic voltammetry (CV), and potentiostatic current generation to investigate the topic of the ruthenium promotion of MeOH electro-oxidation over nanoscale platinum catalysts. The CV and EC NMR results give evidence for two types of CO: CO on essentially pure Pt and CO on Pt/Ru islands, There is no NMR evidence for rapid exchange between the two CO populations. CO molecules on the primarily Pt domains behave much like CO on pure Pt, with there being little effect of Ru on the Knight shift or on Korringa relaxation, In sharp contrast, COs on Pt/Ru have highly shifted C-13 NMR resonances, much weaker Korringa relaxation, and, at higher temperatures, they undergo thermally activated surface diffusion, For CO on Pt, the correlation observed between the 2pi* Fermi level local density of states and the steady-state current suggests a role for Ru in weakening the Pt-CO bond, thereby increasing the CO oxidation rate (current), The combined EC NMR/electrochemistry approach thus provides new insights into the promotion of CO tolerance in Pt/Ru fuel cell catalysts, in addition to providing a novel route to investigating promotion in heterogeneous catalysis in general.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据