4.7 Article Proceedings Paper

Understanding and controlling rotations in factor analytic models

期刊

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/S0169-7439(01)00200-3

关键词

multilinear engine; factor analysis; receptor models; source apportionment

向作者/读者索取更多资源

Positive Matrix Factorization (PMF) is a least-squares approach for solving the factor analysis problem. It has been implemented in several forms. Initially, a program called PMF2 was used. Subsequently, a new, more flexible modeling tool, the Multilinear Engine, was developed. These programs can utilize different approaches to handle the problem of rotational indeterminacy. Although both utilize non-negativity constraints to reduce rotational freedom, such constraints are generally insufficient to wholly eliminate the rotational problem. Additional approaches to control rotations are discussed in this paper: (1) global imposition of additions among scores and subtractions among the corresponding loadings (or vice versa), (2) constraining individual factor elements, either scores and/or loadings, toward zero values, (3) prescribing values for ratios of certain key factor elements, or (4) specifying certain columns of the loadings matrix as known fixed values. It is emphasized that application of these techniques must be based on some external information about acceptable or desirable shapes of factors. If no such a priori information exists, then the full range of possible, rotations can be explored, but, there is no basis for choosing one of these rotations as the best result. Methods for estimating the rotational ambiguity in any specific result are discussed. (C) 2002 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据