4.8 Article

Differential control of vesicle priming and short-term plasticity by Munc13 isoforms

期刊

NEURON
卷 33, 期 3, 页码 411-424

出版社

CELL PRESS
DOI: 10.1016/S0896-6273(02)00568-8

关键词

-

向作者/读者索取更多资源

Presynaptic short-term plasticity is an important adaptive mechanism regulating synaptic transmitter release at varying action potential frequencies. However, the underlying molecular mechanisms are unknown. We examined genetically defined and functionally unique axonal subpopulations of synapses in excitatory hippocampal neurons that utilize either Munc13-1 or Munc13-2 as synaptic vesicle priming factor. In contrast to Munc13-1-dependent synapses, Munc-13-2-driven synapses show pronounced and transient augmentation of synaptic amplitudes following high-frequency stimulation. This augmentation is caused by a Ca2+-dependent increase in release probability and releasable vesicle pool size, and requires phospholipase C activity. Thus, differential expression of Munc13 isoforms at individual synapses represents a general mechanism that controls short-term plasticity and contributes to the heterogeneity of synaptic Information coding.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据