4.7 Article Proceedings Paper

An experimental investigation of the sequence effect in block amplitude loading of cross-ply composite laminates

期刊

INTERNATIONAL JOURNAL OF FATIGUE
卷 24, 期 2-4, 页码 437-446

出版社

ELSEVIER SCI LTD
DOI: 10.1016/S0142-1123(01)00099-8

关键词

block loading; variable amplitude fatigue; polymer matrix composites; cross-ply laminates; sequence effect; damage mechanisms; fractography

向作者/读者索取更多资源

The Palmgren-Miner rule has been shown to be inexact in many cases for various composite materials. Several empirical models have been conceived to account for this discrepancy, as well as the effect of block sequence. The approach taken here is based on the underlying mechanisms. A cross-ply laminate was used as a model material. In general, composites show both initiatory and progressive mechanisms under fatigue loading. The former is active at high static stresses, whereas the latter predominates at lower stress amplitudes where they are given sufficient time to propagate, Initiatory mechanisms give rise to damage from which the progressive mechanisms can start, and conversely the progressive mechanisms continually alter the local stress state which results in further damage accumulation caused by the initiation controlled mechanisms. In a cross-ply laminate, the initiatory mechanism is the formation of transverse cracks, and the progressive mechanism is mainly delamination growth initiated from the transverse cracks. In an experimental investigation of carbon fiber/epoxy cross-ply laminates, the interaction of these mechanisms has shown why a sequence of high-low amplitude levels results in shorter lifetimes than a low-high order. Such a sequence effect seems to be a common behavior for many other composite materials, and can be mechanistically explained by a similar kind of interaction. Advantages and drawbacks of the mechanistic approach compared with empirical rules are also discussed. (C) 2002 Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据