4.5 Article

Role of actuation frequency in controlled flow reattachment over a stalled airfoil

期刊

AIAA JOURNAL
卷 40, 期 2, 页码 209-216

出版社

AMER INST AERONAUTICS ASTRONAUTICS
DOI: 10.2514/2.1662

关键词

-

向作者/读者索取更多资源

The effect of the actuation frequency on the manipulation of the global aerodynamic forces on lifting surfaces using surface-mounted fluidic actuators based on synthetic (zero mass flux) jet technology is demonstrated in wind-tunnel experiments. The effect of the actuation is investigated at two ranges of (dimensionless) jet formation frequencies of the order of, or well above, the natural shedding frequency. The vortical structures within the separated flow region vary substantially when the dimensionless actuation frequency F+ is varied between O(1) and O(10). When F+ is O(1), the reattachment is characterized by the formation of large vortical structures at the driving frequency that persist well beyond the trailing edge of the airfoil. The formation and shedding of these vortices leads to unsteady attachment and, consequently, to a time-periodic variation in vorticity flux and in circulation. Actuation at F+ of O(10) leads to a complete flow reattachment that is marked by the absence of organized vortical structures along the flow surface. This suggests that when the actuation frequency is high enough, the Coanda-like attachment of the separated shear layer to the top (suction) surface of the airfoil can be replaced by completely attached flow for which separation may be bypassed altogether.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据