4.4 Article

Plasmodium knowlesi provides a rapid in vitro and in vivo transfection system that enables double-crossover gene knockout studies

期刊

INFECTION AND IMMUNITY
卷 70, 期 2, 页码 655-660

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/IAI.70.2.655-660.2002

关键词

-

向作者/读者索取更多资源

Transfection technology for malaria parasites provides a valuable tool for analyzing gene function and correlating genotype with phenotype. Transfection models are even more valuable when appropriate animal models are available in addition to complete in vitro systems to be able to fully analyze parasite-host interactions. Here we describe the development of such a model by using the nonhuman primate malaria Plasmodium knowlesi. Blood-stage parasites were adapted to long-term in vitro culture. In vitro-adapted parasites could readapt to in vivo growth and regain wild-type characteristics after a single passage through an intact rhesus monkey. P. knowlesi parasites, either in vitro adapted or in vivo derived, were successfully transfected to generate circumsporozoite protein (CSP) knockout parasites by double-crossover mechanisms. In vitro-transfected and cloned CSP knockout parasites were derived in a time span of only 18 days. Microscopic evaluation of developing oocysts from mosquitoes that had fed on CSP knockout parasites confirmed the impairment of sporozoite formation observed in P. berghei CSP knockout parasites. The P. knowlesi model currently is the only malaria system that combines rapid and precise double-crossover genetic manipulation procedures with complete in vitro as well as in vivo possibilities. This allows for full analysis of P. knowlesi genotype-phenotype relationships and host-parasite interactions,in a system closely related to humans.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据