4.5 Article

Atmospheric chemistry in giant planets, brown dwarfs, and low-mass dwarf stars - I. Carbon, nitrogen and oxygen

期刊

ICARUS
卷 155, 期 2, 页码 393-424

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1006/icar.2001.6740

关键词

Jupiter; giant planets; extrasolar planets; brown dwarfs; Gliese 229B; T dwarfs; L dwarfs; M dwarfs; atmospheric chemistry; carbon; nitrogen; oxygen; methane; carbon monoxide; ammonia; thermo-chemical equilibrium

向作者/读者索取更多资源

The chemical species containing carbon, nitrogen, and oxygen in atmospheres of giant planets, brown dwarfs (T and L dwarfs), and low-mass stars (M dwarfs) are identified as part of a comprehensive set of thermochemical equilibrium and kinetic calculations for all elements. The calculations cover a wide temperature and pressure range in the upper portions of giant planetary and T-, L-, and M-dwarf atmospheres. Emphasis is placed on the major gases CH4, CO, NH3, N-2, and H2O but other less abundant gases are included. The results presented are independent of particular model atmospheres, and can be used to constrain model atmosphere temperatures and pressures from observations of different gases. The influence of metallicity on the speciation of these key elements under pressure-temperature (P-T) conditions relevant to low-mass object atmospheres is discussed. The results of the thermochemical equilibrium computations indicate that several compounds may be useful to establish temperature or pressure scales for giant planet, brown dwarf, or dwarf star atmospheres. We find that ethane and methanol abundance are useful temperature probes in giant planets and methane dwarfs such as Gl 229B, and that CO2 can serve as a temperature probe in more massive objects. Imidogen (NH) abundances are a unique pressure-independent temperature probe for all objects. Total pressure probes for warmer brown dwarfs and M dwarfs are HCN, HCNO, and CH2O. No temperature-independent probes for the total pressure in giant planets or T-dwarf atmospheres are identified among the more abundant C, N, and 0 bearing gases investigated here. (C) 2002 Elsevier Science (USA).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据