4.6 Article

Upper bound limit analysis using linear finite elements and non-linear programming

出版社

JOHN WILEY & SONS LTD
DOI: 10.1002/nag.198

关键词

limit analysis; upper bound; kinematic; finite element; nonlinear programming

向作者/读者索取更多资源

A new method for computing rigorous upper bounds on the limit loads for one-, two- and three-dimensional continua is described. The formulation is based on linear finite elements, permits kinematically admissible velocity discontinuities at all interelement boundaries. and furnishes a kinematically admissible velocity field by solving a non-linear programming problem. In the latter, the objective function corresponds to the dissipated power (which is minimized) and the unknowns are subject to linear equality constraints as well as linear and non-linear inequality constraints. Provided the yield surface is convex. the optimization problem generated by the upper bound method is also convex and can be solved efficiently by applying a two-stage. quasi-Newton scheme to the corresponding Kuhn-Tucker optimality conditions. A key advantage of this strategy is that its iteration count is largely independent of the mesh size. Since the formulation permits non-linear constraints on the unknowns, no linearization of the yield surface is necessary and the modelling of three-dimensional geometries presents no special difficulties. The utility of the proposed upper bound method is illustrated by applying it to a number of two- and three-dimensional boundary value problems. For a variety of two-dimensional cases, the new scheme is up to two orders of magnitude faster than an equivalent linear programming scheme which uses yield surface linearization. Copyright (C) 2001 John Wiley Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据