4.5 Article

Peptide acylation by poly(α-hydroxy esters)

期刊

PHARMACEUTICAL RESEARCH
卷 19, 期 2, 页码 175-181

出版社

KLUWER ACADEMIC/PLENUM PUBL
DOI: 10.1023/A:1014272816454

关键词

biodegradable polymer; poly(lactic acid); poly(lactic-co-glycolic acid); peptide stability; acylation

向作者/读者索取更多资源

Purpose. Poly(lactic acid) (PLA) and poly (lactic-co-glycolic acid) (PLGA) microsphercs were investigated concerning the possible acylation of incorporated peptides. Methods. Atrial natriuretic peptide (ANP) and salmon calcitonin (sCT) were encapsulated into PLA and PLGA microspheres. Peptide integrity was monitored by HPLC-MS analysis during microsphere degradation for four weeks. sCT fragmentation with endoproteinase Glu-C was used for identifying modified amino acids. Peptide stability in lactic acid solutions was investigated to elucidate possible mechanisms for preventing peptide acylation. Results. Both peptides were acylated by lactic and glycolic acid units inside degrading microspheres in a time-dependent manner. After 21 days, 60% ANP and 7% sCT inside PLA microspheres were acylated. Fragmentation of sCT with endoproteinase Glu-C revealed that besides the N-terminal amine group, lysine, tyrosine or serine are further possible targets to acylation. Stability studies of the peptides in lactic acid solutions suggest that oligomers are the major acylation source and that lower oligomer concentration and higher pH substantially decreased the reaction velocity. Conclusions. The use of PLA and PLGA for drug delivery needs substantially more circumspection. As, according to FDA standards, the potential hazards of peptide acylation products need to be assessed, our findings may have significant implications for products already on the market. Techniques to minimize the acylation reaction are suggested.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据