4.0 Article

In vitro engineered cartilage constructs produced by press-coating biodegradable polymer with human mesenchymal stem cells

期刊

TISSUE ENGINEERING
卷 8, 期 1, 页码 131-144

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/107632702753503126

关键词

-

资金

  1. NCI NIH HHS [R25 CA69277, CA 71602] Funding Source: Medline
  2. NIAMS NIH HHS [AR 44501, AR 45181] Funding Source: Medline
  3. NIDCR NIH HHS [DE 11327, DE 12864] Funding Source: Medline

向作者/读者索取更多资源

Cartilage constructs were fabricated by press-coating D,D-L,L-polylactic acid polymer blocks of 1 x 0.5 x 0.5 cm onto high-density cell pellets of 1.5 x 10(6) human mesenchymal stem cells (mhMSCs) isolated from the femoral head of patients undergoing total hip arthroplasty. Following attachment of the cell pellets to the polymer surfaces, chondrogenesis was induced by culturing the constructs for 3 weeks in a serum-free, chemically defined, chondrogenic differentiation medium supplemented with transforming growth factor beta-1 (TGF-beta1). Histochemical analysis showed that the press-coated pellets formed cell layers composed of morphologically distinct, chondrocyte-like cells, surrounded by a fibrous, sulfated proteoglycan-rich extracellular matrix. Immunohistochemical analysis detected collagen type II and cartilage proteoglycan link protein within the extracellular matrix. Expression of the cartilage-specific marker genes collagen types II, IX, X, and XI, and aggrecan was detected by RT-PCR. Scanning electron microscopy revealed organized and spatially distinct zones of cells within the cell-polymer constructs, with the superficial layer resembling compact hyaline cartilage. The fabrication method of press-coating biodegradable polymers with mhMSCs allows the in vitro production of cartilage constructs without harvesting chondrocytes from intact articular cartilage surfaces. These constructs may be applicable as prototypes for the reconstruction of articular cartilage defects in humans.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据