4.7 Article

Lack of ERK activation and cell migration in FGF-2-deficient endothelial cells

期刊

FASEB JOURNAL
卷 16, 期 2, 页码 598-+

出版社

FEDERATION AMER SOC EXP BIOL
DOI: 10.1096/fj.01-0815fje

关键词

MAPK; wound healing

向作者/读者索取更多资源

The formation of blood capillaries from preexisting vessels (angiogenesis) and vascular remodeling secondary to atherosclerosis or vessel injury are characterized by endothelial cell migration and proliferation. Numerous growth factors control these cell functions. Basic fibroblast growth factor (FGF-2), a potent angiogenesis inducer, stimulates endothelial cell proliferation, migration, and proteinase production in vitro and in vivo. However, mice genetically deficient in FGF-2 have no apparent vascular defects. We have observed that endothelial cell migration in response to mechanical damage in vitro is accompanied by activation of the extracellular signal-regulated kinase (ERK) pathway, which can be blocked by neutralizing anti-FGF-2 antibodies. Endothelial cells from mice that are genetically deficient in FGF-2 neither migrate nor activate ERK in response to mechanical wounding. Addition of exogenous FGF-2 restores a normal cell response, which shows that impaired migration results from the genetic deficiency of this growth factor. Injury-induced ERK activation in endothelial cells occurs only at the edge of the wound. In addition, FGF-2-induced ERK activation mediates endothelial cell migration in response to wounding without a significant effect on proliferation. These data show that FGF-2 is a key regulator of endothelial cell migration during wound repair.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据