3.9 Review

Processes and magnitude of CO2, CH4, and N2O fluxes from liming of Australian acidic soils: a review

期刊

AUSTRALIAN JOURNAL OF SOIL RESEARCH
卷 47, 期 8, 页码 747-762

出版社

CSIRO PUBLISHING
DOI: 10.1071/SR09057

关键词

-

资金

  1. Department of Climate Change

向作者/读者索取更多资源

Increases in soil acidification have led to large increases in the application of aglime to Australian agricultural soils. The addition of aglime has the potential to increase greenhouse gas (GHG) emissions due to the release of CO2 during the chemical dissolution of aglime and due to pH-induced changes to soil biological processes. Currently, Australia's GHG accounting system assumes that all the carbon contained in aglime is released to the atmosphere during dissolution in accordance with the Tier 1 methodology of the IPCC. However, a recent approach by TO West and AC McBride has questioned this assumption, hypothesising that a proportion of the carbon from riverine-transported aglime may be sequestered in seawater. In addition, there is presently no capacity within Australia's carbon accounting system to quantify changes to GHG emissions from lime-induced changes to soil biological processes. Therefore, the primary objective of this review was to examine the chemical and biological processes occurring during the application of aglime and the subsequent fluxes in CO2, N2O, and CH4 from soil, with particular reference to the Australian environment. Estimates for CO2 emissions from aglime application in Australia using the contrasting methodologies of the IPCC and West and McBride were compared. Using the methodology of the IPCC it was determined that from the aglime applied in Australia in 2002, 0.995 Tg of CO2 would have been emitted, whereas this figure was reduced to 0.659-0.860 Tg of CO2 using the methodology of West and McBride. However, the accuracy of these estimates is currently limited by poor understanding of the manner in which aglime moves within the Australian landscapes. In addition, there are only a very small number of Australian studies that have examined the effect of aglime on GHG emissions due to changes in soil biological processes, limiting the ability of Australian modellers to accurately incorporate these processes within the carbon accounting system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.9
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据