4.5 Article

Pharmacological protection of synaptic function, spatial learning, and memory from transient hypoxia in rats

期刊

出版社

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/jpet.300.2.408

关键词

-

向作者/读者索取更多资源

Hypoxia significantly reduced cholinergic theta activity in rat CA1 field and intracellular theta in the CA1 pyramidal cells, recorded in hippocampal slices. The hypoxic responses of the hippocampal CA1 pyramidal cells to a brief hypoxia consisted of a short period of synaptic arrest, observed as an elimination of excitatory postsynaptic current under voltage clamp and recovered immediately as oxygenation was reinitiated. The hypoxic synaptic arrest was not associated with reduced postsynaptic responses of the pyramidal cells to externally applied L-glutamate, suggesting that the synaptic arrest might result from a presynaptic mechanism. The hypoxic synaptic arrest was abolished in the presence of 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), a specific adenosine A(1) receptor antagonist. Blocking adenosine A(1) receptors also eliminated effects of hypoxia on the hippocampal CA1 field theta activity and intracellular theta of the CA1 pyramidal cells. In behaving rats, brief hypoxia impaired their water maze performance in both the escape latency and probe tests. The impairment was prevented by intralateral cerebroventricular injections of DPCPX. These results suggest that hypoxia releases adenosine and produces an inhibition of synaptic transmission and intracellular signal cascade(s) involved in generation/maintenance of hippocampal CA1 theta activity. This protection of synaptic efficacy and spatial learning through adenosine A(1) receptor antagonism may represent an effective therapeutic strategy to eliminate functional interruption due to transient hypoxic, episodes and/or chronic hypoxia secondary to compromise of respiratory function.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据