4.7 Article Proceedings Paper

Photosynthetic differences between saplings and adult trees: an integration of field results by meta-analysis

期刊

TREE PHYSIOLOGY
卷 22, 期 2-3, 页码 117-127

出版社

OXFORD UNIV PRESS
DOI: 10.1093/treephys/22.2-3.117

关键词

allometry; leaf mass per area; ontogeny; phase-change; photosynthesis; photosynthetic capacity; Pseudotsuga menziesii; size-dependence; stomatal conductance; Tsuga heterophylla

类别

向作者/读者索取更多资源

Ontogenetic changes in gas exchange parameters provide both insight into mechanisms underlying tree growth patterns, and data necessary to scale environmental impacts on young trees to predict responses of older trees. We present a quantitative review and meta-analysis of field measurements of gas exchange parameters in saplings and mature trees of 35 tree species (seven conifers, seven temperate deciduous trees, and 21 tropical evergreen trees). Data for saplings were obtained in both understory environments and open areas or large gaps. We also present data on ontogenetic changes in photosynthesis for Pseudotsuga menziesii (Mirb.) Franco and Tsuga heterophylla (Raf.) Sarg., species of particular interest because of their large maximal heights and long life-spans. Among tree species, there is evidence for both ontogenetic increases and ontogenetic decreases in photosynthetic capacity on a leaf area basis (A(area)). Overall, A(area) is generally higher for upper-canopy leaves of adult trees than for saplings, especially in temperate deciduous trees. However, the pattern for photosynthetic capacity on a leaf mass basis (A(mass)) is the reverse of that observed for A(area). Saplings of both conifers and broad-leaved trees, even when acclimated to low-light conditions, characteristically have a higher A(mass) than adult trees. This pattern is driven largely by an ontogenetic increase in leaf mass per unit area (LMA), as found in 100% of studies reviewed. Data for Pacific Northwest conifers, although including measurements on some of the tallest trees studied, did not differ greatly from patterns found in other tree species. We conclude that ontogenetic changes in LMA are the single most consistent difference between saplings and adult trees, and that changes in LMA and related aspects of leaf morphology may be critical to understanding both variation in gas exchange during tree growth, and stage-dependent responses of trees to environmental change.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据