4.5 Article

Self-assembly of a virus-mimicking nanostructure system for efficient tumor-targeted gene delivery

期刊

HUMAN GENE THERAPY
卷 13, 期 3, 页码 469-481

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/10430340252792594

关键词

-

资金

  1. NIDCR NIH HHS [DE13151-01] Funding Source: Medline

向作者/读者索取更多资源

Molecular therapy, including gene therapy, is a promising strategy for the treatment of human disease. However, delivery of molecular therapeutics efficiently and specifically to the target tissue remains a significant challenge. A human transferrin (Tf)-targeted cationic liposome-DNA complex, Tf-lipoplex, has shown high gene transfer efficiency and efficacy with human head and neck cancer in vitro and in vivo (Xu, L., Pirollo, K. F., Tang, W. H., Rait, A., and Chang, E. H. Hum. Gene Ther. 1999; 10: 2941-2952). Here we explore the structure, size, formation process, and structure-function relationships of Tf-lipoplex. We have observed Tf-lipoplex to have a highly compact structure, with a relatively uniform size of 50-90 nm. This nanostructure is novel in that it resembles a virus particle with a dense core enveloped by a membrane coated with Tf molecules spiking the surface. More importantly, compared with unliganded lipoplex, Tf-lipoplex shows enhanced stability, improved in vivo gene transfer efficiency, and long-term efficacy for systemic p53 gene therapy of human prostate cancer when used in combination with conventional radiotherapy. On the basis of our observations, we propose a multistep self-assembly process and Tf-facilitated DNA cocondensation model that may provide an explanation for the resultant small size and effectiveness of our nanostructural Tf-lipoplex system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据