4.7 Article

Linear spectral random mixture analysis for hyperspectral imagery

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/36.992799

关键词

hyperspectral image classification; independent component analysis (ICA); linear spectral mixture analysis (LSMA); linear spectral random mixture analysis (LSRMA)

向作者/读者索取更多资源

Independent component analysis (ICA) has shown success in blind source separation and channel equalization. Its applications to remotely sensed images have been investigated in recent years. Linear spectral mixture analysis (LSMA) has been widely used for subpixel detection and mixed pixel classification. It models an image pixel as a linear mixture of materials present in an image where the material abundance fractions are assumed to be unknown and nonrandom parameters. This paper considers an application of ICA to the LSMA, referred to as ICA-based linear spectral random mixture analysis (LSRMA), which describes an image pixel as a random source resulting from a random composition of multiple spectral signatures of distinct materials in the image. It differs from the LSMA in that the abundance fractions of the material spectral signatures in the LSRMA are now considered to be unknown but random independent signal sources. Two major advantages result from the LSRMA. First, it does not require prior knowledge of the materials to be used in the linear mixture model, as required for the LSMA. Second, and most importantly, the LSRMA models the abundance fraction of each material spectral signature as an independent random signal source so that the spectral variability of materials can be described by their corresponding abundance fractions and captured more effectively in a stochastic manner. The experimental results demonstrate that the proposed LSRMA provides an effective unsupervised technique for target detection and image classification in hyperspectral imagery.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据