4.7 Article Proceedings Paper

DEM modelling of industrial granular flows: 3D case studies and the effect of particle shape on hopper discharge

期刊

APPLIED MATHEMATICAL MODELLING
卷 26, 期 2, 页码 89-111

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/S0307-904X(01)00050-6

关键词

-

向作者/读者索取更多资源

While the discrete element method (DEM) is attracting increasing interest for the simulation of industrial granular flow, much of the previous DEM modelling has considered two-dimensional (2D) flows and used circular particles. The inclusion of particle shape into DEM models is very important and allows many flow features, particularly in hoppers, to be more accurately reproduced than was possible when using only circular particles. Elongated particles are shown here to produce flow rates up to 30% lower than for circular particles and give flow patterns that are quite different. The yielding of the particle microstructure resembles more the tearing of a continuum solid, with large-scale quasi-stable voids being formed and large groups of particles moving together. The flow becomes increasingly concentrated in a relatively narrow funnel above the hopper opening. This encourages the hope that DEM may be able to predict important problems such as bridging and rat-holing. Increasing the blockiness or angularity of the particles is also shown to increase resistance to flow and reduces the flow rates by up to 28%, but without having perceptible effect on the nature of the flow. We also describe our methodology for constructing and modelling geometrically complex industrial applications in three dimensions and present a series of industrially important three-dimensional (3D) case studies. The charge motion in a 5 m diameter ball mill and in a Hicom nutating mill, discharge from single- and four-port cylindrical hoppers, and particle size separation by a vibrating screen are demonstrated. For each case, plausible particle size distributions (PSDs) have been used. The results obtained indicate that DEM modelling is now sufficiently advanced that it can make useful contributions to process optimisation and equipment design. Finally the parallelisation of such a DEM code is described and benchmark performance results for a large-scale 2D hopper flow are presented. (C) 2002 Elsevier Science Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据