4.6 Article

Accelerated Monte Carlo based dose calculations for brachytherapy planning using correlated sampling

期刊

PHYSICS IN MEDICINE AND BIOLOGY
卷 47, 期 3, 页码 351-376

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0031-9155/47/3/301

关键词

-

资金

  1. NCI NIH HHS [R01-CA 46640] Funding Source: Medline

向作者/读者索取更多资源

Current brachytherapy dose calculations ignore applicator attenuation and tissue heterogeneities, assuming isolated sources embedded in unbounded medium. Conventional Monte Carlo (MC) dose calculations, while accurate, are too slow for practical treatment planning. This study evaluates the efficacy of correlated sampling in reducing the variance of MC photon transport simulation in typical brachytherapy geometries. Photon histories were constructed in the homogeneous geometry and weight correction factors applied to account for the perturbing effect of heterogeneities. Two different estimators, expected value track-length (ETL) and analogue (ANL), were used. The method was tested for disc-shaped heterogeneities and point-isotropic sources as well as for a model 6702 I-125 seed. Uncorrelated ETL estimation was 10-100 times more efficient than its ANL counterpart. Correlated ETL estimation offered efficiency gains as large as 10(4) in regions where dose perturbations are small (<5%). For perturbations of 40-50%, efficiency gains were in some cases even less than unity. However, correlated ETL was capable of producing less than 2% (1 standard deviation) uncertainty in more than 90% of the voxels in 1 CPU hour. Correlated sampling significantly improves efficiency under selected circumstances and, in combination with other variance reduction strategies, may make MC-based treatment planning a reality for brachytherapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据