4.4 Article

Chemical modification of amine groups on PSII protein(s) retards photoassembly of the photosynthetic water-oxidizing complex

期刊

BIOCHEMISTRY
卷 41, 期 6, 页码 1972-1980

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi0102499

关键词

-

向作者/读者索取更多资源

Four Mn atoms function as catalysts in the water-oxidizing complex located on the oxidizing side of PS II. We have studied the involvement of amine groups of the PS II proteins in photoligation of Mn2+ to the apo water-oxidizing complex, using the combined techniques of photoactivation and chemical modification with the modifiers methyl acetimidate (MAI), acetic acid N-hydroxysuccinimide ester (NHS), and 2,4,6-trinitrobenzenesulfonic acid (TNBS). Chemical modification of hydroxylamine-treated PS II core complexes decreased their capacity for restoration of oxygen evolution and photoligation of Mn2+ to the apo water-oxidizing complex (WOC), but did not affect their electron transfer activity in the vicinity of PS II. The number of functional high-affinity Mn-binding sites, but not of low-affinity sites, was significantly modulated by chemical modification. Kinetic analysis of photoactivation with the repetitive flashes revealed that the intermediate generated during a photoactivation process was destabilized by the chemical modification. To identify which proteins possess the amine groups involved in ligation of functional Mn, we examined the difference in NHS biotinylation between PS II core complexes with and without the Mn cluster. NHS biotinylation resulting in altered ligation of functional Mn apparently occurred on three proteins: an antenna chlorophyll binding protein (CP47), a light-harvesting chlorophyll protein (CP29), and another chlorophyll binding protein (PS II-S). Of these proteins, only the Mn-dependent biotinylation of CP47 was found to occur independently of the application of an NHS-masking concentration before removal of the functional Mn. These results suggest that lysyl residues of CP47, and perhaps also CP29 and PS II-S, function in direct photoligation of Mn2+ to the apo WOC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据