4.6 Article

Formation of functional heterodimers between the TASK-1 and TASK-3 two-pore domain potassium channel subunits

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 277, 期 7, 页码 5426-5432

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M107138200

关键词

-

向作者/读者索取更多资源

The potassium channels in the two-pore domain family are widely expressed and regulate the excitability of neurons and other excitable cells. These channels have been shown to function as dimers, but heteromerization between the various channel subunits has not yet been reported. Here we demonstrate that two members of the TASK subfamily of potassium channels, TASK-1 and TASK-3, can form functional heterodimers when expressed in Xenopus laevis oocytes. To recognize the two TASK channel types, we took advantage of the higher sensitivity of TASK-1 over TASK-3 to physiological pH changes and the discriminating sensitivity of TASK-3 to the cationic dye ruthenium red. These features were clearly observed when the channels were expressed individually. However, when TASK-1 and TASK-3 were expressed together, the resulting current showed intermediate pH sensitivity and ruthenium red insensitivity (characteristic of TASK-1), indicating the formation of TASK-1/TASK-3 heterodimers. Expression of a tandem construct in which TASK-3 and TASK-1 were linked together yielded currents with features very similar to those observed when coexpressing the two channels. The tandem construct also responded to AT(1A) angiotensin II receptor stimulation with an inhibition that was weaker than the inhibition of homodimeric TASK-1 and greater than that shown by TASK-3. Expression of epitope-tagged channels in mammalian cells showed their primary presence in the plasma membrane consistent with their function in this location. Heteromerization of two-pore domain potassium channels may provide a greater functional diversity and additional means by which they can be regulated in their native tissues.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据