4.7 Article

Towards structural dynamics in condensed chemical systems exploiting ultrafast time-resolved x-ray absorption spectroscopy

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 116, 期 7, 页码 2955-2966

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1435618

关键词

-

向作者/读者索取更多资源

We present the case for exploiting time-resolved x-ray absorption to study structural dynamics in the liquid phase. With this aim in mind and considering the large differences between absorption coefficients in the optical and the x-ray domains as well as the x-ray absorption cross sections due to unexcited species, we have estimated the anticipated signal-to-noise ratio (S/N) under realistic conditions with femtosecond laser pump pulses and synchrotron radiation x-ray probe pulses. As a model system, we examine I- photodetachment in water and detect the appearance of laser-generated neutral I atoms by their x-ray near-edge absorption structure (XANES) and by their extended x-ray absorption fine structure (EXAFS). While the S/N ratio critically depends on the photolysis yield, which itself is governed by the optical absorption cross section, the optimum sample concentration varies in a complex fashion as a function of pump laser intensity and optical absorption cross section. However, concentrations yielding near total absorption of the pump laser deliver quite optimum S/N ratios. The calculations presented here provide guidelines for the implementation of time-resolved x-ray absorption experiments in condensed phase chemical systems. (C) 2002 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据