4.6 Article

The binary Clostridium botulinum C2 toxin as a protein delivery system -: Identification of the minimal protein region necessary for interaction of toxin components

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 277, 期 7, 页码 5074-5081

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M109167200

关键词

-

向作者/读者索取更多资源

The binary Clostridium botulinum C2 toxin is composed of the enzyme component C2I and the binding component C2II, which are individual and non-linked proteins. Activated C2IIa mediates cell binding and translocation of C2I into the cytoplasm. C2I ADP-ribosylates G-actin at Arg-177 to depolymerize actin filaments. A fusion toxin containing the N-terminal domain of C2I (residues 1-225) transports C3 ADP-ribosyltransferase from Clostridium limosum into cells (Birth, H., Hofmann, F., Olenik, C., Just, I., and Aktories, B. (1998) Infect. Immun. 66, 1364-1369). We characterized the adaptor function of C2I and its interaction with C2IIa. The fusion toxin GST-C2I(1-225)-C3 was efficiently transported by C2IIa, indicating that C2IIa translocates proteins into the cytosol even when the C2I(1-225) adaptor was positioned in the middle of a fusion protein. Amino acid residues 1-87 of C2I were sufficient for interaction with C2IIa and for translocation of C2I fusion toxins into HeLa cells. Residues 1-87 were the minimal part of C2I to bind to C2IIa on the cell surface, as detected by fluorescence-activated cytometry. An excess of C2I(1-87) (but not of further truncated C2I fragments) competed with Alexa488-labeled C2I for binding to C2IIa. Also, the fragment C2I(30-431) and the fusion toxin C2I(30-225)-C3 competed with C2I-Alexa488 for binding to C2IIa. C2I(30-225)-C3 did not induce cytotoxic effects on cells when applied together with C2IIa, indicating that amino acid residues 1-29 are involved in translocation of C2I but are not absolutely essential for binding to C2IIa.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据