4.6 Article

A high affinity HSF-1 binding site in the 5′-untranslated region of the murine tumor necrosis factor-α gene is a transcriptional repressor

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 277, 期 7, 页码 4981-4988

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M108154200

关键词

-

资金

  1. NIAID NIH HHS [AI42117] Funding Source: Medline

向作者/读者索取更多资源

Tumor necrosis factor-alpha (TNFalpha) is a pivotal early mediator of host defenses that is essential for survival in infections. We previously reported that exposing macrophages to febrile range temperatures (FRT) (38.5-40 degreesC) markedly attenuates TNFalpha expression by causing abrupt and premature cessation of transcription. We showed that this inhibitory effect of FRT is mediated by an alternatively activated repressor form of heat shock factor 1 (HSF-1) and that a fragment of the TNFalpha gene comprising a minimal 85-nucleotide (nt) proximal promoter and the 138-nt 5'-untranslated region (UTR) was sufficient for mediating this effect. In the present study we have used an electrophoretic mobility shift assay (EMSA) to identify a high affinity binding site for HSF-1 in the 5'-UTR of the TNFalpha gene and have used a chromosome immunoprecipitation assay to show that HSF-1 binds to this region of the endogenous TNFalpha gene. Mutational inactivation of this site blocks the inhibitory effect of overexpressed HSF-1 on activity of the minimal TNFalpha promoter (-85/+138) in Raw 264.7 murine macrophages, identifying this site as an HSF-1-dependent repressor. However, the same mutation fails to block repression of a full-length (-1080/+138) TNFalpha promoter construct by HSF-1 overexpression, and HSF-1 binds to upstream sequences in the regions -1080/-845, -533/-196, and -326/-39 nt in EMSA, suggesting that additional HSF-1-dependent repressor elements are present upstream of the minimal -85-nt promoter. Furthermore, although mutation of the HSF-1 binding site in the minimal TNFalpha promoter construct abrogates HSF-1-mediated repression, the same mutation fails to abrogate repression of this construct by high levels of HSF-1 overexpression or exposure to 39.5 degreesC. This suggests that HSF-1 might repress TNFalpha transcription through redundant mechanisms, some of which might not require high affinity binding of HSF-1.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据