4.1 Article

Effects of biological DNA precursor pool asymmetry upon accuracy of DNA replication in vitro

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/S0027-5107(01)00283-4

关键词

deoxyribonucleotides; DNA replication fidelity; DNA precursor asymmetry; in vitro DNA replication; spontaneous mutagenesis

资金

  1. NIGMS NIH HHS [R01 GM 55134] Funding Source: Medline

向作者/读者索取更多资源

Deoxyguanosine triphosphate is underrepresented among the four common deoxyribonucleoside triphosphates (dNTPs), typically accounting for just 5-10% of the total dNTP pool. We have asked whether this pool asymmetry affects the fidelity of DNA replication, by use of an in vitro assay in which an M13 phagemid containing the Escherichia coli lacZalpha gene and an SV40 replication origin is replicated by extracts of human cells. By monitoring reversion of either a TGA or TAA codon within the lacZalpha gene, we found that replication in biologically biased dNTPs, representing our estimate of the concentrations in HeLa cell nuclei, is not significantly more accurate than when measured in reaction mixtures containing the four dNTPs at equimolar concentrations. However, sequence analysis of revertants revealed significantly different patterns of mispairing events leading to mutation. During replication at biased dNTP levels, mutations at the site 5' to C in the template strand for the TGA triplet were less frequent than seen in equimolar reaction mixtures, suggesting that extension from mismatches at this site is relatively slow, and proofreading efficiency high, when dGTP is the next nucleotide to be incorporated. Mismatches opposite template C, which might have been favored by the low physiological concentrations of dGTP, were not favored in our in vitro system, although one particular substitution at this site, TGA --> TTA, was strongly favored at low [dGTP]. An excess of one dNTP was found in our system to be more mutagenic than a corresponding deficiency. We also estimated dNTP concentrations in non-transformed human fibroblasts and found that in vitro replication at these levels caused significantly fewer mutations than we observed under equimolar conditions (100 muM each dNTP). This increased replication fidelity may result from increased proofreading efficiency at the lower dNTP levels; however, replication rates were decreased only slightly at these non-transformed fibroblast concentrations. (C) 2002 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据