4.5 Article

An anatomically based model of transient coronary blood flow in the heart

期刊

SIAM JOURNAL ON APPLIED MATHEMATICS
卷 62, 期 3, 页码 990-1018

出版社

SIAM PUBLICATIONS
DOI: 10.1137/S0036139999355199

关键词

coronary blood flow; finite difference; mathematical model

向作者/读者索取更多资源

An efficient finite difference model of blood flow through the coronary vessels is developed and applied to a geometric model of the largest six generations of the coronary arterial network. By constraining the form of the velocity pro le across the vessel radius, the three-dimensional Navier-Stokes equations are reduced to one-dimensional equations governing conservation of mass and momentum. These equations are coupled to a pressure-radius relationship characterizing the elasticity of the vessel wall to describe the transient blood flow through a vessel segment. The two step Lax-Wendroff finite difference method is used to numerically solve these equations. The flow through bifurcations, where three vessel segments join, is governed by the equations of conservation of mass and momentum. The solution to these simultaneous equations is calculated using the multidimensional Newton-Raphson method. Simulations of blood flow through a geometric model of the coronary network are presented demonstrating physiologically realistic flow rates, washout curves, and pressure distributions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据