4.6 Article

Why OrfY?: Characterization of MMOD, a long overlooked component of the soluble methane monooxygenase from Methylococcus capsulatus (Bath)

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 277, 期 8, 页码 5858-5865

出版社

ELSEVIER
DOI: 10.1074/jbc.M107712200

关键词

-

向作者/读者索取更多资源

Soluble methane monooxygenase (sMMO) has been studied intensively to understand the mechanism by which it catalyzes the remarkable oxidation of methane to methanol. The cluster of genes that encode for the three characterized protein components of sMMO (MMOH, MMOB, and MMOR) contains an additional open reading frame (orfY) of unknown function. In the present study, MMOD, the protein encoded by orfY, was overexpressed as a fusion protein in Escherichia coli. Pure MMOD was obtained in high yields after proteolytic cleavage and a two-step purification procedure. Western blot analysis of Methylococcus capsulatus (Bath) soluble cell extracts showed that MMOD is expressed in the native organism although at significantly lower levels than the other sMMO proteins. The cofactorless MMOD protein is a potent inhibitor of sMMO activity and binds to the hydroxylase protein (MMOH) with an affinity similar to that of MMOB and MMOR. The addition of up to 2 MMOD per MMOH results in changes in the optical spectrum of the hydroxylase that suggest the formation of a (mu-oxo)diiron(III) center in a fraction of the MMOH-MMOD complexes. Possible functions for MMOD are discussed, including a role in the assembly of the MMOH diiron center similar to that suggested for DmpK, a protein that shares some properties with MMOD.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据