4.8 Article

Development and validation of an integrated computational approach for the study of ionic species in solution by means of effective two-body potentials.: The case of Zn2+, Ni2+, and Co2+ in aqueous solutions

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 124, 期 9, 页码 1968-1976

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja015686p

关键词

-

向作者/读者索取更多资源

In this paper we have developed an effective computational procedure for the structural and dynamical investigation of ions in aqueous solutions. Quantum mechanical potential energy surfaces for the interaction of a transition metal ion with a water molecule have been calculated taking into account the effect of bulk solvent by the polarizable continuum model (PCM), The effective ion-water interactions have been fitted by suitable analytical potentials, and have been utilized in molecular dynamics (MD) simulations to obtain structural and dynamical properties of the ionic aqueous solutions, This procedure has been successfully applied to the Co2+-H2O open-shell system and, for the first time, Co-oxygen and Co-hydrogen pair potential functions have been determined and employed in MD simulations. The reliability of the whole procedure has been assessed by applying it also to the Zn2+, and Ni2+ aqueous solutions, and the structural and dynamical properties of the three systems have been calculated by means of MD simulations and have been found to be in very good agreement with experimental results, The structural parameters of the first solvation shells issuing from the MD simulations provide an effective complement to extended X-ray absorption fine structure (EXAFS) experiments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据