4.6 Article

Solvent effects on hydrogen bonds - A theoretical study

期刊

JOURNAL OF PHYSICAL CHEMISTRY A
卷 106, 期 9, 页码 1862-1871

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp013677x

关键词

-

向作者/读者索取更多资源

Hydrogen-bonded interactions in the acetic acid dimer and in complexes formed by acetic acid with acetaldehyde, acetamide, ammonia, methanol, and phenol and in corresponding complexes between the acetate anion and the same ligands as before were studied in the gas phase and in solution by means of quantum chemical DFT/BLYP calculations. Three solvents (heptane, DMSO, and water) of largely varying polarity were chosen. The polarized continuum model was used for the description of the solvent. Optimized geometries, reaction energies, and Gibbs free energies of complex formation were computed. In the neutral complexes an opening of the weaker of the two hydrogen bonds formed in the complex is observed with increasing polarity of the solvent. This opening is interpreted by the creation of optimal conditions for separate solvation of the subsystems of the hydrogen bond in competition with the geometrical requirements for the formation of this bond. Even though almost all reaction energies are found to be negative, only the strongly bound complexes, acetic acid dimer, and acetic acid-acetamide are stable according to Gibbs free energy results. The main factors for this finding are the entropy loss on the formation of the bimolecular complex and the changes of the free energy of solvation. Solvation effects are interpreted in terms of dipole moments, solvent-accessible surfaces, and cavity volumes of the separate molecules and of the complexes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据