4.2 Review

A Strategic, 'Green' Approach to Organic Chemistry with Microwave Assistance and Predictive Yield Optimization as Core, Enabling Technologies

期刊

AUSTRALIAN JOURNAL OF CHEMISTRY
卷 62, 期 1, 页码 3-15

出版社

CSIRO PUBLISHING
DOI: 10.1071/CH08375

关键词

-

向作者/读者索取更多资源

Since 1988, we have pursued enabling technologies and methods as tools for 'green' synthetic chemistry. The developed technologies comprise hardware including catalytic membranes and continuous and batch microwave reactors that have established global markets, as well as interactive, predictive software for optimization of yields and translation of conditions. New methods include 'green' reactions such as a catalytic symmetrical etherification, Pd-catalyzed coupling processes and a multi-component cascade for aniline derivatives. Reactions and workup were facilitated through solvent-free conditions, aqueous media at high temperature and dimethylammonium dimethylcarbamate (dimcarb) as a 'distillable' protic ionic liquid, as well as by non-extractive techniques for product isolation. The technologies and methods were designed for use alone or in various combinations as desired. Consolidation of individual operations or processes into unit steps was achieved through multi-tasking: media, reactants, catalysts, and conditions were selected to serve several purposes at various stages of a reaction. The tools were used to establish a technology platform comprising structurally diverse oligomers, macrocycles, and rod-like molecules supplementary to those available through phenolformaldehyde chemistry. Dienone precursors were assembled from versatile building blocks containing complementary 'male' or 'female' fittings that were connected through inherently 'green' Claisen-Schmidt-type reactions. Isoaromatization afforded Horning-crowns, macrocyclic phenolic derivatives that were hybrids of calixarenes and crown ethers. Preliminary studies of organic substrates in salt water, with and without CO2, called into question proposals for disposal of anthropogenic CO2 by deep-sea dispersal.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据