3.8 Article

Fabrication of porous biodegradable polymer scaffolds using a solvent merging/particulate leaching method

期刊

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH
卷 59, 期 4, 页码 676-681

出版社

WILEY
DOI: 10.1002/jbm.10030

关键词

biodegradable polymers; tissue engineering; porous scaffolds

向作者/读者索取更多资源

This study developed a solvent merging/particulate leaching method for preparing three-dimensional porous scaffolds. Poly(L-lactic-co-glycolic acid) (PLGA) and sodium chloride particles were dry-mixed and cast into a special mold, through which a liquid could pass due to a pressure difference. An organic solvent was then poured into the mold to dissolve and merge the PLGA particles under negative pressure. A nonsolvent was conducted into the PLGA/salt composite to solidify and precipitate the merged PLGA matrix. Finally, a large amount of water was passed through the mold to leach out the salt particles so as to create a porous structure. The results revealed that a highly porous three-dimensional scaffold (> 85 vol %) with a well interconnected porous structure could be achieved by this process. Porosity and the pore size of the scaffold were controlled using the ratio and the particle size of the added salt particles. A larger-volume scaffold was produced using a larger mold. This work provides a continuous and simple procedure for fabricating a bulk three-dimensional porous scaffold for tissue engineering. (C) 2001 John Wiley Sons, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据