4.8 Article

Dechlorination of lindane, dieldrin, tetrachloroethane, trichloroethene, and PVC in subcritical water

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 36, 期 6, 页码 1337-1343

出版社

AMER CHEMICAL SOC
DOI: 10.1021/es011186k

关键词

-

向作者/读者索取更多资源

Pure water has been used to dechlorinate aliphatic organics without the need for catalysts or other additives. Dehydrohalogenation (loss of HCI with the formation of a double bond) occurred at temperatures as low as 105-200 degreesC for 1,1,2,2-tetrachloroethane, lindane (1,2,3,4,5,6-hexachlorocyclohexane, gamma-isomer), and dieldrin (1,2,3,4,10,10-hexachloro-6,7-epoxy-1,4,4a,5,6,7,8,8a-octahydro-endo, exo-1,4:5,8-dimethanonaphthalene). Complete loss of the parent compounds was achieved in less than I h at 150, 200, and 300 degreesC for 1,1,2,2-tetrachloroethane, lindane, and dieldrin, respectively. The initial dechlorination of lindane had an activation energy of 84 W mol(-1) with an Arrhenius pre-exponential factor of 1.5 x 10(6) s(-1). Dehydrohalogenation of lindane formed trichlorobenzenes, followed by subsequent hydrolysis and hydride/chloride exchange to form chlorophenols, lower chlorobenzenes, and phenol as the major final product. Reaction of poly(vinyl chloride) at 300 degreesC for 1 h formed aromatic hydrocarbons ranging from benzene to anthracene and a char residue with a ca. 1:1 carbon-to-hydrogen ratio (mol/mol). The residue contained <1 wt % of chlorine compared to 57 wt % chlorine in the original polymer. All compounds tested yielded chloride ion as the major product (at higher temperatures), indicating that complete dechlorination of some aliphatic organochlorines may be feasible.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据