4.8 Article

Algorithmic cooling and scalable NMR quantum computers

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.241641898

关键词

-

向作者/读者索取更多资源

We present here algorithmic cooling (via polarization heat bath)-a powerful method for obtaining a large number of highly polarized spins in liquid nuclear-spin systems at finite temperature. Given that spin-half states represent (quantum) bits, algorithmic cooling cleans dirty bits beyond the Shannon's bound on data compression, by using a set of rapidly thermal-relaxing bits. Such auxiliary bits could be implemented by using spins that rapidly get into thermal equilibrium with the environment, e.g., electron spins. Interestingly, the interaction with the environment, usually a most undesired interaction, is used here to our benefit, allowing a cooling mechanism. Cooling spins to a very low temperature without cooling the environment could lead to a breakthrough in NMR experiments, and our spin-refrigerating method suggests that this is possible. The scaling of NMR ensemble computers is currently one of the main obstacles to building larger-scale quantum computing devices, and our spin-refrigerating method suggests that this problem can be resolved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据